电子课本网 第49页

第49页

信息发布者:
C
7
5
$ 解:(1)不相似,理由: $
$ ∵ CD⊥x轴, $
$ ∴ ∠ADC=90° $
$ ∵ ∠AOB=90°, $
$ ∴ ∠AOB=∠ADC. $
$ ∵ A(3,0)、B(0,4)、C(4,2) $
$ ∴ OA=3,OB=4,OD=4,DC=2, $
$ ∴ DA=OD-OA=1, $
$ ∴ \frac {OB}{DC} = \frac {2}{1} =2, $
$ \frac {OA}{DA} = \frac {3}{1} =3, $
$ ∴ \frac {OB}{DC} ≠ \frac {OA}{DA} , $
$ ∴△AOB 与△ADC不相似.$
$ (2)相似,理由:$
$ 在Rt△AOB中,AB= \sqrt{3²+4²} =5,$
$ 在Rt△ADC中,AC= \sqrt{1²+2²} = \sqrt{5} .$
$ 过点C作CH⊥OB,交OB于点H,$
$ 则CH=OD=4,BH=4-2=2,$
$ 则在Rt△BHC中,BC= \sqrt{2²+4²} =2\sqrt{5}$
$ ∴\frac {AB}{AC}=\frac {5}{\sqrt{5}}=\sqrt{5},$
$ \frac {BC}{CD}\frac {2\sqrt{5}}{2}=\sqrt{5}$
$ \frac {AC}{AD} =\frac {\sqrt{5}}{1}=\sqrt{5}$
$ ∴\frac {AB}{AC} = \frac {BC}{CD} = \frac {AC}{D} , $
$ ∴ △ACB∽△ADC.$

$证明:∵\frac {AD}{AB}=\frac {A'D'}{A'B'}$
$∴\frac {AD}{A'D'}=\frac {AB}{A'B'}$
$∵\frac {CD}{C'D'}=\frac {AC}{A'C'}=\frac {AB}{A'B'}$
$∴\frac {CD}{C'D'}=\frac {AC}{A'C'}=\frac {AD}{A'D'}$
$∴△ADC∽△A'D'C'$
$∴∠A=∠A'$
$∵\frac {AC}{A'C'}=\frac {AB}{A'B'}$
$∴△ABC∽△A'B'C'$

$解:由图知:\angle BPD一定是钝角;$
$\because \triangle ABC$∽$\triangle PBD,则\angle BPD=\angle BAC;$
$\because BA:AC=1:\sqrt {2},$
$\therefore BP:PD=1:\sqrt {2}或BP:PD=\sqrt {2}:1;$
$只有P_{3}点符合这样的要求,故P点应该在P_{3}处.$
$故答案为:C$
$解:由图知:\angle BPD一定是钝角;$
$\because \triangle ABC$∽$\triangle PBD,则\angle BPD=\angle BAC;$
$\because BA:AC=1:\sqrt {2},$
$\therefore BP:PD=1:\sqrt {2}或BP:PD=\sqrt {2}:1;$
$只有P_{3}点符合这样的要求,故P点应该在P_{3}处.$
$故答案为:C$
$解:连接P_2P_4,则P_2P_4//DF$
$∴△P_2EP_4∽△DEF$
$∵\frac {AB}{DE}=\frac {AC}{DF}=\frac {BC}{EF}=\frac {\sqrt {5}}{\sqrt {8}}$
$∴△ABC∽△DEF$
$∴△P_2EP_4∽△ABC$
$同理△DP_2P_5∽△ABC,△P_2P_4D∽△ABC,△P_5P_4F∽△ABC,△P_5DP_4∽△ABC,△P_4P_5P_2∽△ABC,共有6个.$
$故答案为:6$
$解:连接P_2P_4,则P_2P_4//DF$
$∴△P_2EP_4∽△DEF$
$∵\frac {AB}{DE}=\frac {AC}{DF}=\frac {BC}{EF}=\frac {\sqrt {5}}{\sqrt {8}}$
$∴△ABC∽△DEF$
$∴△P_2EP_4∽△ABC$
$同理△DP_2P_5∽△ABC,△P_2P_4D∽△ABC,△P_5P_4F∽△ABC,△P_5DP_4∽△ABC,△P_4P_5P_2∽△ABC,共有6个.$
$故答案为:6$
$解:如图所示:\triangle A'B'C'即为所求,$
$可得\triangle ABC与\triangle A'B'C'的相似比为:1:\sqrt{5},$
$则\triangle ABC与\triangle A'B'C'的面积比为:1:5,$
$\because \triangle ABC的面积为:\dfrac{1}{2}\times 1\times 2=1,$
$\therefore S_{\triangle A'B'C'}=5.$
$解:如图所示:\triangle A'B'C'即为所求,$
$可得\triangle ABC与\triangle A'B'C'的相似比为:1:\sqrt{5},$
$则\triangle ABC与\triangle A'B'C'的面积比为:1:5,$
$\because \triangle ABC的面积为:\dfrac{1}{2}\times 1\times 2=1,$
$\therefore S_{\triangle A'B'C'}=5.$
$解:(1)不相似,理由: $
$∵ CD⊥x轴, $
$∴ ∠ADC=90° $
$∵ ∠AOB=90°, $
$∴ ∠AOB=∠ADC. $
$∵ A(3,0)、B(0,4)、C(4,2) $
$∴ OA=3,OB=4,OD=4,DC=2, $
$∴ DA=OD-OA=1, $
$∴ \frac {OB}{DC} = \frac {2}{1} =2, $
$\frac {OA}{DA} = \frac {3}{1} =3, $
$∴ \frac {OB}{DC} ≠ \frac {OA}{DA} , $
$∴△AOB 与△ADC不相似.$
$解:(2)相似,理由:$
$在Rt△AOB中,AB= \sqrt{3²+4²} =5,$
$在Rt△ADC中,AC= \sqrt{1²+2²} = \sqrt{5} .$
$过点C作CH⊥OB,交OB于点H,$
$则CH=OD=4,BH=4-2=2,$
$则在Rt△BHC中,BC= \sqrt{2²+4²} =2.\sqrt{5}$
$∴\frac {AB}{AC}=\frac {5}{\sqrt{5}}=\sqrt{5},$
$\frac {BC}{CD}\frac {2\sqrt{5}}{2}=\sqrt{5}$
$\frac {AC}{AD} =\frac {\sqrt{5}}{1}=\sqrt{5}$
$∴\frac {AB}{AC} = \frac {BC}{CD} = \frac {AC}{AD} , $
$∴ △ACB∽△ADC.$
$证明:∵\frac {AD}{AB}=\frac {A'D'}{A'B'}$
$∴\frac {AD}{A'D'}=\frac {AB}{A'B'}$
$∵\frac {CD}{C'D'}=\frac {AC}{A'C'}=\frac {AB}{A'B'}$
$∴\frac {CD}{C'D'}=\frac {AC}{A'C'}=\frac {AD}{A'D'}$
$∴△ADC∽△A'D'C'$
$∴∠A=∠A'$
$∵\frac {AC}{A'C'}=\frac {AB}{A'B'}$
$∴△ABC∽△A'B'C'$