电子课本网 第82页

第82页

信息发布者:
C
D
$\frac {\sqrt{3}}{2}$
$\frac {1}{2}$
$ 解:原式=2\sqrt{3}-|2×\frac {\sqrt{3}}{2}-2×1|-6×(\frac {\sqrt{2}}{2})²+\frac {25}{9}$
$ =2\sqrt{3}-2+\sqrt{3}-3+\frac {25}{9}$
$ =3\sqrt{3}-\frac {20}{9}$
$解:过点C作CD⊥AB于点D$
$∵∠A=30°,AC=\sqrt {6},cosA=cos{30}°=\frac {AD}{AC}=\frac {\sqrt {3}}2$
$∴AD=\frac {3\sqrt {2}}2$
$∵sinA=sin{30}°=\frac {CD}{AC}=\frac 1 2$
$∴CD=\frac {\sqrt {6}}2$
$∵tanB=tan{45}°=\frac {CD}{BD}=1$
$∴BD=\frac {\sqrt {6}}2$
$∴AB=AD+BD=\frac {3\sqrt {2}+\sqrt {6}}2$
$在Rt△BCD中,由勾股定理,得$
$BC=\sqrt {{CD}^2+{BD}^2}=\sqrt {3}$

B
$解:原式=2+\frac {\sqrt {3}}3×\frac {\sqrt {3}}2$
               $=2+\frac 1 2$
               $=\frac 5 2$
$故答案为:C$
$解:∵四边形ABCD是矩形$
$∴AO=BO=CO=DO$
$∵∠AOB=60°$
$∴△AOB是等边三角形$
$∴AO=AB$
$∴AC=2AB$
$∴BC=\sqrt {3}AB$
$∴\frac {AB}{BC}=\frac {AB}{\sqrt {3}AB}=\frac {\sqrt {3}}3$
$故答案为:D$
解: ∵三角形的内角和为180°,∠A、∠B、∠C的度数之比为1:2:3,
设∠A=x, 则∠B=2x, ∠C=3x,
则有:x+2x+3x=180°, 解得:x=30°,
∴∠B=60°,
∴sinB=$\frac{\sqrt{3}}{2}$.
故答案为: $\frac {\sqrt 3}{2}$
作业帮 $解:连接MF,MO,延长MO交EF于H,如图,$
$\because 直线MN与\odot O相切于点M,$
$\therefore MH\bot MN,$
$\because EF$∥$MN,$
$\therefore MH\bot EF,$
$\therefore EH=HF,即MH垂直平分EF,$
$\therefore ME=MF,$
$\because EM=EF,$
$\therefore EM=EF=MF,$
$\therefore \triangle MEF为等边三角形,$
$\therefore \angle MEF=60^{\circ},$
$\therefore \cos E=\cos 60^{\circ}=\frac{1}{2},$
$故答案为:\frac{1}{2}.$
作业帮 $解:连接MF,MO,延长MO交EF于H,如图,$
$\because 直线MN与\odot O相切于点M,$
$\therefore MH\bot MN,$
$\because EF$∥$MN,$
$\therefore MH\bot EF,$
$\therefore EH=HF,即MH垂直平分EF,$
$\therefore ME=MF,$
$\because EM=EF,$
$\therefore EM=EF=MF,$
$\therefore \triangle MEF为等边三角形,$
$\therefore \angle MEF=60^{\circ},$
$\therefore \cos E=\cos 60^{\circ}=\frac{1}{2},$
$故答案为:\frac{1}{2}.$
$解:原式=2\sqrt{3}-|2×\frac {\sqrt{3}}{2}-2×1|-6×(\frac {\sqrt{2}}{2})²+\frac {25}{9}$
$=2\sqrt{3}-2+\sqrt{3}-3+\frac {25}{9}$
$=3\sqrt{3}-\frac {20}{9}$
$解:过点C作CD⊥AB于点D$
作业帮
$∵∠A=30°,AC=\sqrt {6},cosA=cos30°=\frac {AD}{AC}=\frac {\sqrt {3}}2$
$∴AD=\frac {3\sqrt {2}}2$
$∵sinA=sin30°=\frac {CD}{AC}=\frac 1 2$
$∴CD=\frac{\sqrt {6}}2$
$∵tanB=tan45°=\frac {CD}{BD}=1$
$∴BD=\frac {\sqrt {6}}2$
$∴AB=AD+BD=\frac {3\sqrt {2}+\sqrt {6}}2$
$在Rt△BCD中,由勾股定理,得$
$BC=\sqrt {{CD}^{2}+{BD}^{2}}=\sqrt {3}$
解:法一、如图,
作业帮
$在Rt\triangle ABD中,\angle ADB=90^{\circ},AD=BD=3,$
$\therefore AB=\sqrt{A{D}^{2}+B{D}^{2}}=\sqrt{{3}^{2}+{3}^{2}}=3\sqrt{2},$
$\therefore \cos \angle ABC=\frac{BD}{AB}=\frac{3}{3\sqrt{2}}=\frac{\sqrt{2}}{2}.$
$故选:B.$
$法二、在Rt\triangle ABD中,\angle ADB=90^{\circ},AD=BD=3,$
$\therefore \angle ABD=\angle BAD=45^{\circ},$
$\therefore \cos \angle ABC=\cos 45^{\circ}=\frac{\sqrt{2}}{2}.$
$故选:B.$