$解:∵\frac {2}{1×3}=\frac 11-\frac 13,\frac 2{2×4}=\frac 12-\frac 14,\frac 2{3×5}=\frac 13-\frac 15···$
$∴\frac 2{n(n+2)}=\frac 1n-\frac 1{n+2}$
$∴原式=\frac 12(1-\frac 13+\frac 12-\frac 14+\frac 13-\frac 15+···+\frac 1n-\frac 1{n+2})$
$ =\frac 12×(1+\frac 12-\frac1{n+1}-\frac 1{n+2} )$
$ =\frac {3n^2+5n}{4(n+1)(n+2)}$