电子课本网 第95页

第95页

信息发布者:
解:原式=\frac {4m+5+(m-1)(m+1)}{m+1}÷\frac {m+2}{m+1}
=\frac {4m+5+\ \mathrm {m^2}-1}{m+1}×\frac {m+1}{m+2}
=\frac {(m+2)^2}{m+1}×\frac {m+1}{m+2}
=m+2
解:原式=\frac {a+b-b}{(a+b)(a-b)}×\frac {(a-b)^2}{a(a-b)}
=\frac 1{a+b}
$ 解:原式= \frac {a-4}{a} ÷ [\frac {a+2}{a(a-2)} - \frac {a-1}{(a-2)²}] $
$ = \frac {a-4}{a} ÷[ \frac {(a+2)(a-2)}{a(a-2)²} -\frac {a(a-1)}{a(a-2)²} ]$
$ = \frac {a-4}{a} ÷ \frac {a²-4-a²+a}{a(a-2)²}$
$= \frac {a-4}{a} \cdot \frac {a(a-2)²}{a-4} $
$ =(a-2)²$
$ =a²-4a+4$
$ ∵a²-( \frac {1}{4} ) ^{-1} \cdot a+3=0$
$ ∴a²-4a+3=0$
$ ∴a²-4a=-3$
$ ∴原式=-3+4=1$
$解:∵\frac {2}{1×3}=\frac 11-\frac 13,\frac 2{2×4}=\frac 12-\frac 14,\frac 2{3×5}=\frac 13-\frac 15···$
$∴\frac 2{n(n+2)}=\frac 1n-\frac 1{n+2}$
$∴原式=\frac 12(1-\frac 13+\frac 12-\frac 14+\frac 13-\frac 15+···+\frac 1n-\frac 1{n+2})$
$ =\frac 12×(1+\frac 12-\frac1{n+1}-\frac 1{n+2} )$
$ =\frac {3n^2+5n}{4(n+1)(n+2)}$

D
$ -\frac 12$
$ \begin{aligned} 解:3-x-1&=x-4 \\ x&=3 \\ \end{aligned}$
$ 检验:当x=3时,x-4≠0$
$ ∴x=3是方程的解$
$ \begin{aligned}解:x(x+2)-(x-1)(x+2)&=3 \\ x^2+2x-x^2-2x+x+2&=3 \\ x&=1 \\ \end{aligned}$
$检验:当x=1时,(x-1)(x+2)=0$
$∴x=1是增根,原方程无解$