$解:{t}_{1\lt }{t}_2$
$由题意可得$
${t}_1=\dfrac{2s}{v}$
${t}_2=\dfrac{s}{v+p}+\dfrac{s}{v-p}=\dfrac{2vs}{{v}^2-{p}^2}$
$\therefore {t}_1-{t}_2=\dfrac{2s}{v}-\dfrac{2vs}{{v}^2-{p}^2}=\dfrac{-2s{p}^2}{v({v}^2-{p}^2)}$
$\because 0\lt p\lt v$
$\therefore {t}_1-{t}_2\lt 0$
$\therefore {t}_1\lt {t}_2$