电子课本网 第89页

第89页

信息发布者:
1
$\frac {2}{3}$
$解:原式=\frac {a²-4a+4-4}{a-2}×\frac {(a-2)(a+2)}{a-4}$
$=\frac {a(a-4)}{a-2}×\frac {(a-2)(a+2)}{a-4}$
$=a²+2a$
$解:原式=\frac {(x-3)(x+3)}{(x+1)²}÷(\frac {x²+x+3-x²}{x+1})$
$=\frac {(x-3)(x+3)}{(x+1)²}×\frac {x+1}{x+3}$
$=\frac {x-3}{x+1}$

$ 解:原式=\frac {(a-3)²}{a-2}÷\frac {a²-9}{a-2}$
$ =\frac {(a-3)²}{a-2}×\frac {a-2}{(a+3)(a-3)}$
$ =\frac {a-1}{a+3}$
$ 因为\frac {a-1}{2}≤1,a为正整数,且a-2≠0,a-3≠0,a+3≠0$
$ 所以a=1$
$ 所以原式=\frac {1-3}{1+3}=-\frac {1}{2}$

A
$±\frac {1}{2}$
$解:{t}_{1\lt }{t}_2$
$由题意可得$
${t}_1=\dfrac{2s}{v}$
${t}_2=\dfrac{s}{v+p}+\dfrac{s}{v-p}=\dfrac{2vs}{{v}^2-{p}^2}$
$\therefore {t}_1-{t}_2=\dfrac{2s}{v}-\dfrac{2vs}{{v}^2-{p}^2}=\dfrac{-2s{p}^2}{v({v}^2-{p}^2)}$
$\because 0\lt p\lt v$
$\therefore {t}_1-{t}_2\lt 0$
$\therefore {t}_1\lt {t}_2$