解:$(1)$由表格可知,将点$(1,$$2)$和点$(2,$$1)$代入函数解析式
得$\begin{cases}{a(1-2)^2+k=2}\\{a(2-2)^2+k=1}\end{cases},$解得$\begin{cases}{a=1}\\{k=1}\end{cases}$
∴$y_{1}=(x-2)^2+1$
$(2) $由题意,得$y_{2}=(x-2+2)^2+1=x^2+1$
把点$A(m,$$n_{1})、$$B(m+1,$$n_{2})$分别代入$y_{1}、$$y_{2}$的表达式中,
$n_{1}=(m-2)^2+1=\ \mathrm {m^2}-4m+5,$$n_{2}=(m+1)^2+1=\ \mathrm {m^2}+2\ \mathrm {m}+2$
∴$n_{1}-n_{2}=(\ \mathrm {m^2}-4m+5)-(\ \mathrm {m^2}+2m+2)=-6m+3$
当$-6m+3> 0$时,$m< \frac {1}{2};$当$-6m+3=0$时,$m=\frac {1}{2};$当$-6m+3< 0$时,$m> \frac {1}{2}$
∴当$m< \frac {1}{2} $时,$n_{1}-n_{2}> 0,$即$n_{1}> n_{2};$
当$m=\frac {1}{2} $时,$n_{1}-n_{2}=0,$即$n_{1}=n_{2};$
当$m>\frac {1}{2} $时,$n_{1}-n_{2}< 0,$即$n_{1}< n_{2}$