解:$(1)$将点$A(\frac {1}{2},$$-\frac {1}{2})$代入$y=ax^2$可得$-\frac {1}{8}=a×(\frac {1}{2})^2$
∴$a=-\frac {1}{2}$
将点$B$代入$y=-\frac {1}{2}x^2$可得$m=-\frac {1}{2}×3^2=-\frac {9}{2}$
$(2)$点$B$的坐标为$(3,$$-\frac {9}{2}),$函数关于$y$轴对称
∴点$B$的对称点的坐标为$(-3,$$-\frac {9}{2})$
$(3)$∵$a=-\frac {1}{2}<0$
∴当$x>0$时,$y$随$x$的增大而减小
$(4)y=-\frac {1}{2}x^2$的顶点为$(0,$$0),$则在$x=0$时,$y$取得最大值