解:问题(1)的逆命题:已知∠A=∠C,若BC//AD,则AB /CD,它是真命题. 证明:∵BC//AD(已知), ∴∠ABE=∠A(两直线平行,内错角相等). ∵∠A=∠C(已知), ∴∠ABE=∠C(等量代换), ∴AB//CD(同位角相等,两直线平行).
解:∠BPC=∠ABC+∠ACP.理由如下: 如图,延长AP交BC于点D, 则∠BPD=∠ABP+∠BAP, ∠CPD= ∠ACP+∠CAP, ∴∠BPC=∠BPD+∠CPD=∠ABP+∠BAP+∠ACP+∠CAP=∠ABP+∠BAC+∠ACP. 又∵∠BAC=∠PBC, ∴∠BPC=∠ABP+∠PBC+∠ACP=∠ABC+∠ACP
$解:∵P为△ABC的角平分线的交点, $ $∴∠PBC=\frac{1}{2}∠ABC,$ $∠PCB=\frac{1}{2}∠ACB. $ $∵P为△ABC的等角点,$ $∠BAC<∠ABC<∠ACB, $ $∴∠PBC=∠BAC,$ $∠BCP=∠ABC=2∠PBC=2∠BAC,$ $∠ACB=∠BPC=4∠BAC, $ $又∵∠BAC+∠ABC+∠ACB=180°, $ $∴∠BAC+2∠BAC+4∠BAC=180°, $ $∴∠BAC=\frac{180°}{7},$ $∴△ABC三个内角的度数分别为\frac {180°}{7},\frac {360°}{7},\frac {720°}{7}.$
|
|