解:$(1)$∵$△PQC$的面积与四边形$PABQ$的面积相等
∴$S_{△ABC}=2S_{△PQC}$
∵$PQ//AB$
∴$△ABC∽△PQC$
∴$\frac {CP}{AC}=\frac {\sqrt 2}2$
∵$AC=4$
∴$CP=2\sqrt 2$
$(2)$∵$△ABC∽△PQC$
∴$\frac {CP}{CQ}=\frac {AC}{BC}=\frac 43$
设$CP=4x,$则$CQ=3x,$$PA=4-4x,$$QB=3-3x$
∵$△PQC$的周长与四边形$PABQ$的周长相等
∴$CP+CQ=PA+QB+AB$
∴$4x+3x=(4-4x)+(3-3x)+5$
解得$x=\frac 67$
∴$CP=4x=\frac {24}{7}$
$(3)$分两种情况
①过点$P$作$PM⊥AB,$垂足为点$M,$要使$△PQM$为等腰直角三角形,则$PM=PQ$
∵$△PQC∽△ABC,$$PM=PQ$
∴$\frac {PQ}5=\frac {\frac {12}{5}-PM}{\frac {12}{5}}=\frac {\frac {12}{5}-PQ}{\frac {12}{5}}$
∴$PQ=\frac {60}{37}$
②当$∠PMQ=90°$时,要使$△PQM$为等腰直角三角形,则有$\frac {PQ}5=\frac {\frac {12}{5}-\frac 12PQ}{\frac {12}{5}}$
解得$PQ=\frac {120}{49}$
综上所述,$PQ$的长为$\frac {60}{37}$或$\frac {120}{49}$