电子课本网 第72页

第72页

信息发布者:
C
D
A
$x$
$\frac{1}{x-1}$
$\frac{k+1}{k-1}$
$ \begin{aligned}解:原式&=\frac{x+4-1}{x^2+3x} \\ &=\frac{x+3}{x(x+3)} \\ &=\frac{1}{x} \\ \end{aligned}$
$ \begin{aligned}解:原式&=\frac{x-3+1-1+x}{x-3} \\ &=\frac{2x-3}{x-3} \\ \end{aligned}$
$ \begin{aligned}解:原式&= \frac{x+1}{(x+1)(x-1)}+\frac{x^2-3x}{(x+1)(x-1)} \\ &=\frac{x^2-2x+1}{(x+1)(x-1)} \\ &=\frac{(x-1)^2}{(x+1)(x-1)} \\ &=\frac{x-1}{x+1} \\ \end{aligned}$
$ \begin{aligned} 解:原式&=\frac{2x^2}{x+y}-(x-y) \\ &=\frac{2x^2}{x+y}-\frac{(x+y)(x-y)}{x+y} \\ &=\frac{2x^2-x^2+y^2}{x+y} \\ &=\frac{x^2+y^2}{x+y} \\ \end{aligned}$