电子课本网 第77页

第77页

信息发布者:
C
B
x-2
$​\frac{1}{2}ab​$
$​\frac{a}{a-b}​$
$​ \begin{aligned}解:原式&=\frac{a}{(a+3)(a-3)}÷\frac{a}{a-3} \\ &=\frac{a}{(a+3)(a-3)}·\frac{a-3}{a} \\ &=\frac{1}{a+3} \\ \end{aligned}​$
$​ \begin{aligned}解:原式&=\frac{m-3}{2(m-2)}÷\frac{(m+2)(m-2)-5}{m-2} \\ &=\frac{m-3}{2(m-2)}·\frac{m-2}{(m+3)(m-3)} \\ &=\frac{1}{2m+6} \\ \end{aligned}​$
$​ 解:原式=(\frac{a}{a}-\frac{1}{a})÷(\frac{a^2}{a}-\frac{1}{a}) ​$
$​~~~~~~~~~~~~~~~~~=\frac{a-1}{a}·\frac{a}{a^2-1} ​$
$​~~~~~~~~~~~~~~~~~=\frac{a-1}{(a-1)(a+1)} ​$
$​~~~~~~~~~~~~~~~~~=\frac{1}{a+1} ​$
$​解:原式=\frac{a+1}{a-1}-\frac{a}{(a-1)^2}·a​$
$​~~~~~~~~~~~~~~~~~=\frac{(a+1)(a-1)-a^2}{(a-1)^2}​$
$​~~~~~~~~~~~~~~~~~=-\frac{1}{(a-1)^2}​$
$​ 解:原式=1-\frac{a-b}{a-2b}·\frac{(a-2b)^2}{(a+b)(a-b)} ​$
$​~~~~~~~~~~~~~~~~~=1-\frac{a-2b}{a+b} ​$
$​~~~~~~~~~~~~~~~~~=\frac{a+b}{a+b}-\frac{a-2b}{a+b} ​$
$​~~~~~~~~~~~~~~~~~=\frac{3b}{a+b} ​$
$​当\frac{a}{b}=\frac{1}{3},即b=3a时,​$
$​ 原式=\frac{9a}{a+3a}=\frac{9a}{4a}=\frac{9}{4}​$