电子课本网 第126页

第126页

信息发布者:
B
$-\frac{2\sqrt{5}}{5}$
$-\sqrt{-y}$
$ \begin{aligned}解:原式&=\frac{\sqrt{20x^2y^2}}{\sqrt{z^5}} \\ &=\frac{2xy\sqrt{5z}}{z^3} \\ \end{aligned}$
$ \begin{aligned}解:原式&=\frac{1}{a}\sqrt{\frac{a+1}{a}} \\ &=\frac{1}{a^2} \sqrt{a(a+1)} \\ \end{aligned}$
$ \begin{aligned}解:原式&= \sqrt{\frac{48a^2b^2(a+b)}{100}} \\ &=\frac{2}{5}ab \sqrt{3(a+b)} \\ \end{aligned}$
$ \begin{aligned} 解:原式&=a^2\sqrt{b}÷ \sqrt{9a^2b^3} \\ &=a^2\sqrt{b}÷3ab\sqrt b \\ &=\frac{a}{3b} \\ \end{aligned}$
$ \begin{aligned} 解:原式&=\frac{2}{b}×\frac{1}{3}×(-\frac{3}{2})\sqrt{ab^5·\frac{a}{b}·a^2b} \\ &= -\frac{1}{b}\sqrt{a^4b^5} \\ &=-a^2b\sqrt b \\ \end{aligned}$
$解:∵x+y=-6,xy=4$
$∴x<0,y<0$
$∴ \sqrt{\frac{y}{x}}+\sqrt{\frac{x}{y}}$
$=-\frac{\sqrt{xy}}{x}-\frac{\sqrt{xy}}{y}$
$=-\frac{\sqrt{xy}(x+y)}{xy} $
$把x+y=-6,xy=4代入$
$得-\frac{\sqrt{xy}(x+y)}{xy}=-\frac{\sqrt{4}×(-6)}{4}=3$