电子课本网 第6页

第6页

信息发布者:
$​=\frac {ab^2}{6ac}​$
$​=\frac {b^2}{6c}​$
$​=\frac {3xy^2}{4z^2} · (- \frac {8z^2}{y} )​$
$​=-\frac {24xy^2z^2}{4z^2y}​$
$​=-6 xy​$
$​=\frac {(-2m)^3}{(3n^2)^3}​$
$​=- \frac {8\ \mathrm {m^3}}{27n^6}​$
$​=\frac {2}{(x+1)(x-1)} · (x-1)​$
$​=\frac {2}{x+1}​$
$​=\frac {(x+1)(x-1)}{x(x+2)} · \frac {x}{x-1}​$
$​= \frac {x+1}{x+2}​$
$​=\frac {(x+1)^2}{(x+1)(x-1)} · \frac {1}{x+1}​$
$​=\frac {1}{x-1}​$
$​=\frac {(x+2)(x-2)}{4x^2y} · \frac {6x^3y}{3(x+2)}​$
$​=\frac {x(x-2)}{2}​$
$​=\frac {x}{(x+1)(x-1)} · \frac {x(x+1)}{x^2}​$
$​=\frac 1{x-1}​$
$​=\frac {(x+1)^2}{(x+1)(x-1)} · \frac {x(x-1)}{x+1}​$
$​=x​$
$​=\frac {a+3}{1-a} · \frac {(a-1)^2}{a(a+3)}​$
$​=\frac {a+3}{1-a} · \frac {(1-a)^2}{a(a+3)}​$
$​=\frac {1-a}a​$
$​=\frac {\mathrm {m^2}}{n^2} · \frac {n}{m} · (- \frac {n^2}{m} )​$
$​=\frac {m}{n} · (- \frac {n^2}{m} )​$
$​=-n​$
$​=\frac {ab^2}{2c^2} · \frac {4cd}{-3a^2b^2} · \frac {-3}{2d}​$
$​=\frac 1{ac}​$
$​=- \frac {a-1}{a+2} · \frac {(a+2)(a-2)}{(a-1)^2} · (a+1)(a-1)​$
$​=-(a-2)(a+1)​$
$​=-a^2+a+2​$
$​=-x(x-y) · \frac {xy}{(x-y)^2} · \frac {x-y}{x^2}​$
$​=-y​$