$解:(1)原式=1-x²+x²+2x=1+2x,$
$当x=\frac{1}{2}时,原式=1+2×\frac{1}{2}=2.$
$ \begin{aligned}(2)原式&=2x²+x-4x-2-(x²-2x+1)-x²-2x \\ &=2x²+x-4x-2-x²+2x-1-x²-2x \\ &=-3x-3, \\ \end{aligned}$
$当x=-\frac{1}{5}时,$
$原式=-3×(-\frac{1}{5})-3=\frac{3}{5}-3 =-\frac{12}{5}.$