解$:(1)$设$S=1+2+2^2+2^3+2^4+·s+2^9+2^{10}①.$
将等式两边同时乘$2,$得$2S=2+2^2+2^3+2^4+2^5+·s+2^{10}+2^{11}②.$
将②减去①,得$2S-S=2^{11}-1.$
所以$S=2^{11}-1,$即$1+2+2^2+2^3+2^4+·s+2^9+2^{10}=2^{11}-1$
$(2)$设$S=1+3+3^2+3^3+3^4+·s+3^{n-1}+3^{n}①.$
将等式两边同时乘$3,$得$3S=3+3^2+3^3+3^4+3^5+·s+3^{n}+3^{n+1}②.$
将②减去①,得$3S-S=3^{n+1}-1.$
所以$S=\frac {1}{2}(3^{n+1}-1),$即$1+3+3^2+3^3+3^4+·s+3^{n-1}+3^{n}=\frac {1}{2}(3^{n+1}-1)($其中$n$为正整数)