首 页
电子课本网
›
第11页
第11页
信息发布者:
解:因为在$△ABC$中,$AB=3,$$AC=7,$所以第三边$BC$的长的取值范围是$4< BC< 10.$
所以符合条件的偶数是$6$或$8.$
当$BC=6$时,$△ABC$的周长为$3+6+7=16;$当$BC=8$时,$△ABC$的周长为$3+7+8=18.$
所以$△ABC$的周长为$16$或$18$
解$:(1)$第三条边的长为$30-a-(2a+2)=(28-3a)m$
$(2)$第一条边的长不可以为$7m $
理由:当$a=7$时,三边长分别为$7m、$$16m、$$7m,$
因为$7+7< 16,$所以不能构成三角形,即第一条边的长不可以为$7m.$
因为$a、$$b、$$c$是三角形的三边长,所以$b+c-a>0,$$b-c-a< 0,$$c=a-b< 0,$$a-b+c> 0.$
所以$∣b+c-a∣+∣b-c-a∣+∣c-a-b|-∣a-b+c∣$
$=b+c-a-b+c+a-c+a+b-a+b-c$
$=2b $
7
2021
解:当$△ABC$内点的个数是$n$时,三角形内互不重叠的小三角形的个数为$2n+1,$
所以表格内填$7,$$2021$
上一页
下一页