解:$(1)$这种合金的平均密度:
$ρ=\frac {m}{V}=\frac {374\ \mathrm {g}}{100\ \mathrm {cm}^3}=3.74\ \mathrm {g/cm}^3=3.74×10^3\ \mathrm {kg/m}^3;$
$(2)(3)$设铝的质量为$m_{铝},$钢的质量为$m_{钢},$
则$m_{铝}+ m_{钢}=374\ \mathrm {g}--------①$
由$ρ=\frac {m}{V}$可得$V=\frac {m}{ρ},$且构件的体积等于原来两种金属体积之和,
则$\frac {m_{铝}}{ρ_{铝}}+ \frac {m_{钢}}{ρ_{钢}}=100\ \mathrm {cm}^3,$
即$\frac {m_{铝}}{2.7\ \mathrm {g/cm}^3} +\frac {m_{钢}}{7.9\ \mathrm {g/cm}^3}=100\ \mathrm {cm}^3---------②$
联立①②式,解得$m_{铝}=216\ \mathrm {g},$
则这种合金中铝的质量占总质量的百分比为$\frac {216\ \mathrm {g}}{374\ \mathrm {g}}×100\%≈57.8\%.$