解:作$AD⊥BC$交$BC$于点$D$
∵$AB=\sqrt 2,$$∠B=45°,$$BC=1+\sqrt 3$
∴$AD=AB · sinB=\sqrt 2×\frac {\sqrt 2}2=1$
$BD=AD=1,$$CD=BC-BD=\sqrt 3$
$tanC=\frac {AD}{CD}=\frac {\sqrt 3}3$
∴$∠C=30°,$$∠BAC=180°-45°-30°=105°,$$AC=\frac {AD}{sinC}=2$