$解:(1)证明:设A(x_1,y_1),B(x_2,y_2),$
$代入y=\frac{k}{x}中,得x_1•y_1=x_2•y_2=k,$
$∴S_{△AOM}=\frac{1}{2}x_1•y_1=\frac{k}{2},$
$S_{△BON}=\frac{1}{2}x_2•y_2=\frac{k}{2},$
$∴S_{△AOM}=S_{△BON}.$
$(2)解:由题意知m=n=\frac{k}{2},$
$∴A(2,\frac{k}{2}),B(\frac{k}{2},2).$
$过点A作AE⊥x轴于点E,$
$过点B作BF⊥x轴于点F.$
$∵S_{△AOB}+S_{△BOF}=S_{△梯形AEFB}+S_{△AOE},$
$S_{△BOF}=S_{△AOE},$
$ \begin{aligned} ∴S_{△AOB}&=S_{梯形AEFB} \\ &=\frac{1}{2}•(2+\frac{k}{2})•(\frac{k}{2}-2) \\ &=16, \\ \end{aligned}$
$解得k=12或k=-12(不满足题意,舍去),$
$∴k=12.$