电子课本网 第41页

第41页

信息发布者:
$\sqrt{ab}$
$\sqrt{ab}$
能开得尽方
$ \begin{aligned}解:原式&=\sqrt {16} \\ &=4 \\ \end{aligned}$
$ \begin{aligned}解:原式&=\sqrt {144} \\ &=12 \\ \end{aligned}$
$ \begin{aligned}解:原式&=\sqrt {16} \\ &=4 \\ \end{aligned}$
$ \begin{aligned}解:原式&=\sqrt 4 \\ &=2 \\ \end{aligned}$
$解:原式=\sqrt {36}-5$
$\hspace{1.4cm}=6-5$
$\hspace{1.4cm}=1$
$ \begin{aligned}解:原式&=\sqrt {36}+\sqrt {100} \\ &=6+10 \\ &=16 \\ \end{aligned}$
$解:原式=14$
$ \begin{aligned}解:原式&=\sqrt {25}×\sqrt 2 \\ &=5\sqrt{2} \\ \end{aligned}$
$ 解:原式=\sqrt {6^2}×\sqrt {7^2} $
$\hspace{1.4cm}=6×7 $
$\hspace{1.4cm}=42 $
$解:原式=\sqrt {9x^2}•\sqrt y^4•\sqrt y$
$\hspace{1.4cm}=3|x|y^2\sqrt y$
$解:原式=2\sqrt{xy}$
$ \begin{aligned}解:原式&=\sqrt {16}•\sqrt {x^2} \\ &=4x \\ \end{aligned}$
$解:∵\sqrt{x+1}•\sqrt{2-x}= \sqrt{(x+1)(2-x)}成立,$
$∴\begin{cases}{\ x+1≥0,\ }\\{2-x≥0,}\end{cases}$
$解得-1≤x≤ 2.\ $