$解:原式 ={\frac {3-{a}^{2}} {{(a+1)}^{2}}}+{\frac {a+1-1} {a+1}}÷{\frac {a-1+1} {a-1}}$
$={\frac {3-{a}^{2}} {{(a+1)}^{2}}}+{\frac {a} {a+1}}·{\frac {a-1} {a}}$
$={\frac {3-{a}^{2}} {{(a+1)}^{2}}}+{\frac {a-1} {a+1}}$
$={\frac {3-{a}^{2}} {{(a+1)}^{2}}}+{\frac {(a-1)(a+1)} {{(a+1)}^{2}}}$
$={\frac {(3-{a}^{2})+({a}^{2}-1)} {{(a+1)}^{2}}}$
$={\frac {2} {{(a+1)}^{2}}}$