解:因为$0<x<1$
所以$\frac {1}{x}>x$
原式$=\sqrt {x²+\frac {1}{x²}-2+4}-\sqrt {x²+\frac {1}{x²}+2-4}$
$=\sqrt {x²+\frac {1}{x²}+2}-\sqrt {x²+\frac {1}{x²}-2}$
$=\sqrt {(x+\frac {1}{x})²}-\sqrt {(x-\frac {1}{x})²}$
$=|x+\frac {1}{x}|-|x-\frac {1}{x}|$
$=x+\frac {1}{x}-(\frac {1}{x}-x)$
$=2x$