$证明:∵∠ACB+∠A+∠B=180°, ∴∠ACB=180°-∠A-∠B. $
$∵CE平分∠ACB, ∴∠BCE= \frac{1}{2} (180°-∠A-∠B). $
$∵CD⊥AB,∴∠BDC=90°,∴∠BCD=90°-∠B, $
$ \begin{aligned} ∴∠DCE&=∠BCE-∠BCD \\ &= \frac{1}{2} (180°-∠A-∠B)-(90°-∠B) \\ &=90°- \frac{1}{2} ∠A - \frac{1}{2} ∠B-90°+∠B \\ &= \frac{1}{2} (∠B-∠A), \\ \end{aligned}$
$即∠DCE= \frac{1}{2} (∠B-∠A).$