$解:\begin{cases}{ 5x+2y=11a+18,① }\ \\ { 2x-3y=12a-8,②} \end{cases}$
$①×3,得15x+6y=33a+54,③$
$②×2,得4x-6y=24a-16,④$
$③+④,得19x=57a+38,解得x=3a+2,$
$把x=3a+2代入①,得5(3a+2)+2y=11a+18,解得y=-2a+4,$
$所以方程组的解是\begin{cases}{ x=3a+2, }\ \\ { y=-2a+4. } \end{cases}因为x>0,y>0,所以\begin{cases}{ 3a+2>0,⑤}\ \\ { -2a+4>0,⑥ } \end{cases}$
$由⑤得a>-\frac{2}{3},由⑥得a<2.\ $
$所以a的取值范围是-\frac{2}{3}<a<2.\ $