电子课本网 第61页

第61页

信息发布者:
C
​$=\frac {a-b}{a-b}$​
​$ =1$​
​$=\frac {b(a+b)-ab}{(a+b)(a-b)}$​
​$ =\frac {b^2}{a^2-b^2}$​
​$=\frac {(a+2)(2-a)-4}{2-a}$​
​$ =\frac {a^2}{a-2}$​
解:​$(1)n ·\frac n{n+1}=n-\frac {n}{n+1}$​
​$ (2)$​右边​$=\frac {n(n+1)-n}{n+1}=\frac {n^2+n-n}{n+1}=\frac {n^2}{n+1}=n ·\frac n{n+1}=$​左边
∴等式正确

A
$\frac {5}{3}$
2
-1
​$ =\frac {2x-3}{x^3}$​
​$=\frac {a^2-b^2}{(a-b)^2}$​
​$ =\frac {a+b}{a-b}$​
​$=\frac {2(x+3)+(1-x)(x-3)-6×2}{2(x+3)(x-3)}$​
​$ =\frac {2x+6+x-3-x^2+3x-12}{2(x+3)(x-3)}$​
​$ =\frac {-x^2+6x-9}{2(x+3)(x-3)}$​
​$ =-\frac {x-3}{2x+6}$​
​$=\frac {1-x+1+x}{1-x^2}+\frac 2{1+x^2}+\frac 4{1+x^4}$​
​$ =\frac {2(1+x^2)+2(1-x^2)}{1-x^4}+\frac 4{1+x^4}$​
​$ =\frac {4(1+x^4)+4(1-x^4)}{1-x^8}$​
​$ =\frac 8{1-x^8}$​