首 页
电子课本网
›
第115页
第115页
信息发布者:
解:原式$=\frac {\sqrt {3}}{2}$
解:原式$=\frac {3}{x}$
解:原式$=\frac {4b²}{a}$
解:原式$=\sqrt {\frac {25}{9}}$
$ =\frac {5}{3}$
解:原式$=\frac {7×2}{9}$
$ =\frac {14}{9}$
解:原式$=\frac {x\sqrt {x}}{5y²}$
解:原式$=\frac {2\sqrt {2}}{3}$
解:原式$=-\sqrt {\frac {54}{3}}$
$ =-\sqrt {18}$
$ =-3\sqrt {2}$
解:原式$=-\frac {1}{3}\sqrt {\frac {2}{98}}$
$ =-\frac {1}{3}×\frac {1}{7}$
$ =-\frac {1}{21}$
解:原式$=\sqrt {\frac {16}{5}÷\frac {8}{5}}$
$ =\sqrt {2}$
解:原式$=\frac {1}{2}×\sqrt {6ab÷3a}$
$ =\frac {1}{2}\sqrt {2b}$
解:设下底长为$x$
$(2+x)×\sqrt {2}×\frac {1}{2}=\sqrt {50}$
$ x=8$
∴梯形的下底长为
$8$
$\sqrt {\frac {125}{26}}$
$5\sqrt {\frac {5}{26}}$
$5\sqrt {\frac {5}{26}}$
解:$(2)\sqrt {n-\frac {n}{n^2+1}}=n\sqrt {\frac {n}{n^2+1}}$
证明:$\sqrt {n-\frac {n}{n^2+1}}=\sqrt {\frac {n(n^2+1)-n}{n^2+1}}=\sqrt {\frac {n^3+n-n}{n^2+1}}$
$=\sqrt {\frac {n^3}{n^2+1}}=n \sqrt {\frac {n}{n^2+1}}$
上一页
下一页