电子课本网 第115页

第115页

信息发布者:
解:原式​$=\frac {\sqrt {3}}{2}$​
解:原式​$=\frac {3}{x}$​
解:原式​$=\frac {4b²}{a}$​
解:原式​$=\sqrt {\frac {25}{9}}$​
​$ =\frac {5}{3}$​
解:原式​$=\frac {7×2}{9}$​
​$ =\frac {14}{9}$​
解:原式​$=\frac {x\sqrt {x}}{5y²}$​
解:原式​$=\frac {2\sqrt {2}}{3}$​
解:原式​$=-\sqrt {\frac {54}{3}}$​
​$ =-\sqrt {18}$​
​$ =-3\sqrt {2}$​
解:原式​$=-\frac {1}{3}\sqrt {\frac {2}{98}}$​
​$ =-\frac {1}{3}×\frac {1}{7}$​
​$ =-\frac {1}{21}$​
解:原式​$=\sqrt {\frac {16}{5}÷\frac {8}{5}}$​
​$ =\sqrt {2}$​
解:原式​$=\frac {1}{2}×\sqrt {6ab÷3a}$​
​$ =\frac {1}{2}\sqrt {2b}$​
解:设下底长为​$x$​
​$(2+x)×\sqrt {2}×\frac {1}{2}=\sqrt {50}$​
​$ x=8$​
∴梯形的下底长为​$8$
​$\sqrt {\frac {125}{26}}$​
​$5\sqrt {\frac {5}{26}}$​
​$5\sqrt {\frac {5}{26}}$​
解:​$(2)\sqrt {n-\frac {n}{n^2+1}}=n\sqrt {\frac {n}{n^2+1}}$​
证明:​$\sqrt {n-\frac {n}{n^2+1}}=\sqrt {\frac {n(n^2+1)-n}{n^2+1}}=\sqrt {\frac {n^3+n-n}{n^2+1}}$​
​$=\sqrt {\frac {n^3}{n^2+1}}=n \sqrt {\frac {n}{n^2+1}}$​