解:菱形的边长为$\sqrt {96}÷4=\sqrt {6}(\mathrm {cm})$
∵$∠DAB = 120°$
∴$∠DAO= 60°$
∴$OA=\frac {\sqrt {6}}{2}\mathrm {cm},$$OD=\frac {3\sqrt {2}}{2}\mathrm {cm}$
∴$AC=\sqrt {6}(\mathrm {cm}),$$BD = 3\sqrt {2}(\mathrm {cm})$
∴$S=\frac {1}{2}×AC×BD=3\sqrt {3}(\mathrm {cm}²)$