电子课本网 第124页

第124页

信息发布者:
A
解:原式​$=\sqrt {40×10}$​
​$ =\sqrt {400}$​
​$ =20$​
解:原式​$=\sqrt {50÷2}$​
​$ =\sqrt {25}$​
​$ =5$​
解:原式​$=\sqrt {2}+2\sqrt {2}-6\sqrt {2}$​
​$ =-3\sqrt {2}$​
解:原式​$=3-2\sqrt {11}+3\sqrt {11}-22$​
​$ =\sqrt {11}-19$​
解:原式​$=(\sqrt {2})²-(\sqrt {5})²$​
​$ =2-5$​
​$ =-3$​
解:原式​$=3-2\sqrt {6}+2$​
​$ =5-2\sqrt {6}$​
解:原式​$=8\sqrt {3}×\frac {\sqrt {2}}{2}÷5\sqrt {3}$​
​$ =4\sqrt {6}×\frac {\sqrt {3}}{15}$​
​$ =\frac {4\sqrt {2}}{5}$​
解:原式​$=14a\sqrt {2a}-4a²×\frac {1}{2\sqrt {2a}}+7a\sqrt {2a}$​
​$ =14a\sqrt {2a}-a\sqrt {2a}+7a\sqrt {2a}$​
​$ =20a\sqrt {2a}$​
解:将​$a=2,$​​$b=-8,$​​$c=5$​代入得:
原式​$=\frac {-8+\sqrt {64-4×2×5}}{2×2}=\frac {8+2\sqrt {6}}{4} =2+\frac {\sqrt {6}}{2}$​
解:原式​$=a²+2ab+b²+(2a²+ab-2ab-b²)-3a²=ab$​
将​$a=2+\sqrt {3},$​​$b=2-\sqrt {3}$​代入原式得:
原式​$=(2+\sqrt {3})(2-\sqrt {3}) =4-3 =1$​
解:菱形的边长为​$\sqrt {96}÷4=\sqrt {6}(\mathrm {cm})$​
∵​$∠DAB = 120°$​
∴​$∠DAO= 60°$​
∴​$OA=\frac {\sqrt {6}}{2}\mathrm {cm},$​​$OD=\frac {3\sqrt {2}}{2}\mathrm {cm}$​
∴​$AC=\sqrt {6}(\mathrm {cm}),$​​$BD = 3\sqrt {2}(\mathrm {cm})$​
∴​$S=\frac {1}{2}×AC×BD=3\sqrt {3}(\mathrm {cm}²)$​
解:∵​$(a+\frac {1}{a})²=a²+2+\frac {1}{a²}=10$​
∴​$a²+\frac {1}{a²}=8$​
​$(a-\frac {1}{a})²=a²-2+\frac {1}{a²}=6$​
∴​$a-\frac {1}{a}=±\sqrt {6}$​