解:$(1)\frac {1}{1+\sqrt{2}}=\frac {1-\sqrt{2}}{(1+\sqrt{2})(1-\sqrt{2})}=-(1-\sqrt{2})=-1+\sqrt{2}$
$(2)\frac 1{\sqrt{n}+\sqrt{n+1}}=-\sqrt{n}+\sqrt{n+1}$
$(3)$原式$=(-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}+...-\sqrt{2014}+\sqrt{2015})×(1+\sqrt{2015})$
$ =(-1+\sqrt{2015})(1+\sqrt{2015})$
$ =2015-1$
$ =2014$