解:$(1)$猜想,$\sqrt{2011}-\sqrt{2010}>\sqrt{2012}-\sqrt{2011}$
$\sqrt{2011}-\sqrt{2010}=\frac {(\sqrt{2011}-\sqrt{2010})(\sqrt{2011}+\sqrt{2010})}{\sqrt{2011}+\sqrt{2010}}=\frac 1{\sqrt{2011}+\sqrt{2010}}$
$\sqrt{2012}-\sqrt{2011}=\frac {(\sqrt{2012}-\sqrt{2011})(\sqrt{2012}+\sqrt{2011})}{\sqrt{2012}+\sqrt{2011}}=\frac 1{\sqrt{2012}+\sqrt{2011}}$
$∵\sqrt{2011}+\sqrt{2010}<\sqrt{2012}+\sqrt{2011}$
$∴\frac 1{\sqrt{2011}+\sqrt{2010}}>\frac 1{\sqrt{2012}+\sqrt{2011}},$即$\sqrt{2011}-\sqrt{2010}>\sqrt{2012}-\sqrt{2011}$
$(2)$由$(1)$可得
原式$=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+....+10-\sqrt{99}$
$=10-1$
$=9$