电子课本网 第112页

第112页

信息发布者:
D
-1
​​$\sqrt{5}$​​或​​$\sqrt{13}$​​
解:原式​​$=\frac {a+2-3}{(a+2)(a-2)}×\frac {a(a+2)}{a-1}$​​
​​$=\frac {a}{a-2}$​​
当​​$a=\sqrt{6}+2$​​时
原式​​$=\frac {\sqrt{6}+2}{\sqrt{6}+2-2}$​​
​​$=\frac {3+\sqrt{6}}{3}$​​
解:​$(1)$​猜想,​$\sqrt{2011}-\sqrt{2010}>\sqrt{2012}-\sqrt{2011}$​
​$\sqrt{2011}-\sqrt{2010}=\frac {(\sqrt{2011}-\sqrt{2010})(\sqrt{2011}+\sqrt{2010})}{\sqrt{2011}+\sqrt{2010}}=\frac 1{\sqrt{2011}+\sqrt{2010}}$​
​$\sqrt{2012}-\sqrt{2011}=\frac {(\sqrt{2012}-\sqrt{2011})(\sqrt{2012}+\sqrt{2011})}{\sqrt{2012}+\sqrt{2011}}=\frac 1{\sqrt{2012}+\sqrt{2011}}$​
​$∵\sqrt{2011}+\sqrt{2010}<\sqrt{2012}+\sqrt{2011}$​
​$∴\frac 1{\sqrt{2011}+\sqrt{2010}}>\frac 1{\sqrt{2012}+\sqrt{2011}},$​即​$\sqrt{2011}-\sqrt{2010}>\sqrt{2012}-\sqrt{2011}$​
​$(2)$​由​$(1)$​可得
原式​​$=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+....+10-\sqrt{99}$​​
​$=10-1$​
​$=9$​