电子课本网 第56页

第56页

信息发布者:
$ \begin{aligned}(1)解:原式&=\sqrt{12}×\sqrt{6}-3\sqrt{\frac{1}{3}}×\sqrt{6} \\ &=6\sqrt{2}-3×\sqrt{\frac{1}{3}×6} \\ &=6\sqrt{2}-3\sqrt{2} \\ &=3\sqrt{2}. \\ (2)解:原式&=1-2\sqrt{2}+2+\sqrt{16÷2} \\ &=3-2\sqrt{2}+\sqrt{8} \\ &=3-2\sqrt{2}+2\sqrt{2} \\ &=3. \\ \end{aligned}$
$解:∵x \sqrt{5} - \sqrt{3} ,y=\sqrt {5} + \sqrt{3} ,\ \ \ \ \ $
$∴x-y=( \sqrt{5} - \sqrt{3} )-( \sqrt{5} + \sqrt{3} )=-2 \sqrt{3} ,\ $
$\ xy=( \sqrt{5} - \sqrt{3} )(\sqrt{5} + \sqrt{3} )=5-3=2,\ $
$\ ∴x²+y²-3xy-5x+5y\ $
$\ =x²+y²-2xy-xy-5(x-y)\ $
$\ =(x-y)²-xy-5(x-y)\ $
$\ =(-2 \sqrt{3} )²-2-5×(-2 \sqrt{3} )\ $
$\ =12-2+10 \sqrt{3}\ $
$=10+10 \sqrt{3} .$
$解:∵a= \sqrt{2} -1,b= \sqrt{2} +1,\ \ \ \ \ $
$∴ab=1,b+a=2 \sqrt{2} ,b-a=2,\ \ \ \ \ $
$∴ \frac{b}{a} - \frac{a}{b}\ $
$=\frac {b²-a²}{ab}$
$= \frac{(b+a)(b-a)}{ab}\ $
$= \frac{2\sqrt{2}×2}{1}\ $
$=4 \sqrt{2} .$