电子课本网 第58页

第58页

信息发布者:
$解:由数轴可知,-2<a<-1,2<b<3,$
$∴a+1<0,a+b>0,b-3<0. $
$ \begin{aligned}原式&= \sqrt{(a+1)²}+(a+b)+|b-3| \\ &=|a+1|+(a+b)+(3-b) \\ &=(-a-1)+(a+b)+(3-b) \\ &=2. \\ \end{aligned}$
$解:\frac{a²-1}{a+1} -\frac{\sqrt{a²-2a+1}}{a²-a}$
$=\frac{(a+1)(a-1)}{a+1}- \frac{\sqrt{(a-1)²}}{a(a-1)}$
$=(a-1)-\frac {|a-1|}{a(a-1)}.\ $
$∵a=2-\sqrt{3},\ $
$∴a-1=1-\sqrt{3}<0.\ $
$ \begin{aligned}∴原式&=a-1+\frac{1}{a}=2-\sqrt {3} -1+2+\sqrt {3} \\ &=3. \\ \end{aligned}$
$ \begin{aligned}解:原式&=3\sqrt{2}÷(\sqrt{3}-2\sqrt{3}) \\ &=3\sqrt{2}÷(-\sqrt{3}) \\ &=- \sqrt{6}. \\ \end{aligned}$
$ \begin{aligned}解:原式&=3 \sqrt{12} ÷2 \sqrt{3} -2 \sqrt{3} ÷2 \sqrt{3}\ \\ &= \frac{3}{2} × \sqrt{\frac{12}{3}} -1 \\ &=3-1 \\ &=2.\ \\ \end{aligned}$
$ \begin{aligned}解:∵ &=\sqrt{5+2\sqrt{6}} = \sqrt{(\sqrt{3})²+2\sqrt{6}+(\sqrt{2})^{2} }\ \\ &= \sqrt{(\sqrt{3}+\sqrt{2})²} = \sqrt{3} + \sqrt{2} ,\ \ \ \ \ \\ y&=\sqrt{5-2\sqrt{6}} = \sqrt{(\sqrt{3})²-2\sqrt{6}+(\sqrt{2})²}\ \\ &= \sqrt{(\sqrt{3}-\sqrt{2})²} = \sqrt{3} - \sqrt{2},\ \ \ \ \ \\ \end{aligned}$
$∴x+y= \sqrt{3} + \sqrt{2} + \sqrt{3} - \sqrt{2} =2 \sqrt{3} ,\ $
$\ xy=( \sqrt{3} + \sqrt{2} )(\sqrt{3} - \sqrt{2} )=3-2=1.\ $