$解:\frac{a²-1}{a+1} -\frac{\sqrt{a²-2a+1}}{a²-a}$
$=\frac{(a+1)(a-1)}{a+1}- \frac{\sqrt{(a-1)²}}{a(a-1)}$
$=(a-1)-\frac {|a-1|}{a(a-1)}.\ $
$∵a=2-\sqrt{3},\ $
$∴a-1=1-\sqrt{3}<0.\ $
$ \begin{aligned}∴原式&=a-1+\frac{1}{a}=2-\sqrt {3} -1+2+\sqrt {3} \\ &=3. \\ \end{aligned}$