$解:∵m是\sqrt {5} 的小数部分,$
$∴m=\sqrt {5} -2.\ $
$原式= \sqrt{(m-\frac{1}{m})^{2} }=|m-\frac{1}{m}|.\ $
$∵m=\sqrt {5} -2,$
$∴\frac{1}{m}=\frac{1}{\sqrt {5} -2}=\sqrt {5} +2,即\frac{1}{m}>m,$
$ \begin{aligned}∴原式&=-(m-\frac{1}{m})=-m+\frac{1}{m} \\ &=-(\sqrt{5}-2)+\sqrt{5}+2=4. \\ \end{aligned}$