$ \begin{aligned}解:(1)①原式&=\frac{4×(\sqrt{13}+3)}{(\sqrt{13}-3)(\sqrt{13}+3)} \\ &= \sqrt{13}+3. \\ ②原式&=\frac {\sqrt {n} -\sqrt {n-2} }{(\sqrt {n} +\sqrt {n-2} )(\sqrt {n} -\sqrt {n-2} )} \\ &=\frac {\sqrt{n}- \sqrt{n-2}}{2}. \\ \end{aligned}$
$(2)原式=\frac{1}{3}(\sqrt{5}- \sqrt{2}+ \sqrt{8}- \sqrt{5}+ \sqrt{11}- \sqrt{8}$
$+···+\sqrt{3n+2}- \sqrt{3n-1})( \sqrt{3n+2}+\sqrt {2} ) $
$ \begin{aligned} ~~~~~~~~~~~~~~&=\frac{1}{3}( \sqrt{3n+2}-\sqrt {2} )( \sqrt{3n+2}+\sqrt{2}) \\ &=n. \\ \end{aligned}$