电子课本网 第142页

第142页

信息发布者:
$解:由题意,得x= (\sqrt{3}+\sqrt{2})²=5+2\sqrt{6},$
$y=(\sqrt{3}- \sqrt{2})²=5-2\sqrt{6},$
$∴x+y=10,x-y=4\sqrt{6},xy=1.\ $
$∴原式= \frac {x-y}{xy(x+y)}= \frac{4\sqrt{6}}{1×10}=\frac {2\sqrt {6} }{5}.$
$ \begin{aligned}解:(1)①原式&=\frac{4×(\sqrt{13}+3)}{(\sqrt{13}-3)(\sqrt{13}+3)} \\ &= \sqrt{13}+3. \\ ②原式&=\frac {\sqrt {n} -\sqrt {n-2} }{(\sqrt {n} +\sqrt {n-2} )(\sqrt {n} -\sqrt {n-2} )} \\ &=\frac {\sqrt{n}- \sqrt{n-2}}{2}. \\ \end{aligned}$
$(2)原式=\frac{1}{3}(\sqrt{5}- \sqrt{2}+ \sqrt{8}- \sqrt{5}+ \sqrt{11}- \sqrt{8}$
$+···+\sqrt{3n+2}- \sqrt{3n-1})( \sqrt{3n+2}+\sqrt {2} ) $
$ \begin{aligned} ~~~~~~~~~~~~~~&=\frac{1}{3}( \sqrt{3n+2}-\sqrt {2} )( \sqrt{3n+2}+\sqrt{2}) \\ &=n. \\ \end{aligned}$
m²+5n²
2mn
21
4
1
2
$解:由(1)知,a=m²+5n²,6=2mm,$
$∴mm=3.$
$ ∵a、m、n均为正整数,$
$∴m=1,n=3或m=3,n=1.$
$ 当m=1,n=3时,a=1²+5×3²=46;$
$ 当m=3,n=1时,a=3²+5×1²=14.$
$ 综上所述,a的值为14或46.$