电子课本网 第80页

第80页

信息发布者:
C
B
3
3
$解:分式的分子、分母都除以xy,$
$则\frac{2x-3xy+2y}{x+2xy+y}=\frac{(2x-3xy+2y)÷xy}{(x+2xy+y)÷xy}= \frac{\frac {2}{y}-3+\frac {2}{x}}{\frac {1}{y}+2+\frac {1}{x}}.$
$∵\frac{1}{x} +\frac {1}{y}=3,\ $
$∴原式=\frac{2×3-3}{3+2}=\frac{3}{5}.$
$解:原式=x-\frac{1}{x},$
$∵x²-3x-1=0,等式两边同除以x,$
$即x- 3-\frac{1}{x}=0,∴x -\frac{1}{x}=3,$
$即\frac{x²-1}{x}=3.\ $
$ \begin{aligned}解:原式&=x²+\frac {1}{x²} \\ &=x²-2+\frac {1}{x²}+2 \\ &=( x-\frac {1}{x} )²+2 \\ &=3²+2 \\ &=11. \\ \end{aligned}$
$解:分式的分子、分母都除以x,$
$ \begin{aligned} 则原式&=\frac{2}{x²-3+\dfrac {1}{x²}} \\ &=\frac{2}{11-3} \\ &= \frac{1}{4}. \\ \end{aligned}$
-6
$解:(1)设\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=k,$
$则x=2k,y=3k,z=6k,$
$∴\frac{x+2y-z}{x-2y+3z}=\frac{2k+6k-6k}{2k-6k+18k}=\frac{2k}{14k}=\frac{1}{7},$
$∴分式\frac{x+2y-z}{x-2y+3z}的值为\frac{1}{7}.$
$(2)设 \frac{y+z}{x}=\frac{z+x}{y}=\frac {x+y}{z}=k,$
$则\begin{cases}{y+z=kx,\ ①}\ \\ {x+z=ky,\ ②} \\{x+y=kz,③}\end{cases}\ $
$①+②+③得2x+2y+2z=k(x+y+z).\ $
$∵x+y+z≠0,∴k=2,$
$∴原式=\frac{2z-z}{2z+z}=\frac{z}{3z} =\frac{1}{3}.$