$解:(1)设\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=k,$
$则x=2k,y=3k,z=6k,$
$∴\frac{x+2y-z}{x-2y+3z}=\frac{2k+6k-6k}{2k-6k+18k}=\frac{2k}{14k}=\frac{1}{7},$
$∴分式\frac{x+2y-z}{x-2y+3z}的值为\frac{1}{7}.$
$(2)设 \frac{y+z}{x}=\frac{z+x}{y}=\frac {x+y}{z}=k,$
$则\begin{cases}{y+z=kx,\ ①}\ \\ {x+z=ky,\ ②} \\{x+y=kz,③}\end{cases}\ $
$①+②+③得2x+2y+2z=k(x+y+z).\ $
$∵x+y+z≠0,∴k=2,$
$∴原式=\frac{2z-z}{2z+z}=\frac{z}{3z} =\frac{1}{3}.$