$解:解不等式3x-6≤x,得x≤3,$
$解不等式\frac{4x+5}{10}<\frac{x+1}{2},得x>0,$
$则不 等式组的解集为0<x≤3,$
$∴不等式组的整数解为1,2,3.$
$ \begin{aligned}原式&=\frac{x+3}{(x-1)²}· [\frac{x²-3}{(x+3)(x-3)}-\frac{x-3}{(x+3)(x-3)}] \\ &=\frac{x+3}{(x-1)²}· \frac{(x-1)(x-3)}{(x+3)(x-3)} \\ &=\frac{1}{x-1}. \\ \end{aligned}$
$∵x≠±3和1,∴x=2,则原式=1.$