$解:(1)原式可化为|4-2m|+4-2m+(n-2)²$
$+ \sqrt{(m-2)n²} =0.\ $
$∵m-2≥0,∴m≥2,∴4-2m≤0.$
$∴原式可化为(n-2)²+ \sqrt{(m-2)n²} =0.$
$∵(n-2)²≥0, \sqrt{(m-2)n²} ≥0.$
$∴\begin{cases}{ n-2=0, }\ \\ {\ \sqrt {(m-2)n²}=0,} \end{cases} 即\begin{cases}{\ n=2,}\ \\ {m=2,\ } \end{cases}\ $
$∴m+n=2+2=4.$
$(2)根据题意,得\begin{cases}{ x-2023+y≥0, }\ \\ {\ 2023-x-y≥0,} \end{cases}\ $
$则x+y=2023,$
$即 \sqrt{3x+2y-1-m}+\sqrt{2x+3y-m}=0.$
$∴\begin{cases}{ x+y=2023, }\ \\ { 3x+2y-1-m=0, }\\{2x+3y-m=0,} \end{cases} 解得\begin{cases}{ x=1012, }\ \\ { y=1011, }\\{m=5057,} \end{cases}\ $
$故m=5057.$