$解:(1)① \sqrt{4-2\sqrt {3} }$
$= \sqrt{3-2\sqrt {3} +1}$
$= \sqrt{(\sqrt {3} )²-2×\sqrt {3} ×1+1²}$
$= \sqrt{(\sqrt {3} -1)²}$
$= \sqrt {3} -1.\ $
$②\sqrt{7-4\sqrt {3} }\ $
$= \sqrt{4-4\sqrt {3} +3}\ $
$= \sqrt{2²-2×2×\sqrt {3} +(\sqrt {3} )²}\ $
$=\sqrt{(2-\sqrt{3})^{2} }$
$=2 -\sqrt{3}.$
$(2)∵a+6\sqrt {5}\ $
$=(m+\sqrt{5}n)²$
$=m²+5n²+2\sqrt {5} mn.$
$∴a=m²+5n²且 2\sqrt {5} mn=6\sqrt {5} ,$
$∴a=m²+5n²且mn=3.$
$∵a、m、n为正整数,$
$∴当m=1,n=3时,a=46;$
$当m=3,n=1时,a=14.$
$∴a的值为14或46.$