电子课本网 第135页

第135页

信息发布者:
$\frac{\sqrt {3} }{2} $
$\frac{3\sqrt{10}}{5} $
$ \begin{aligned}解:原式&=-\frac{1}{3}·\sqrt {9y} \\ &= -\sqrt{y}. \\ \end{aligned}$
$ 解:原式 = \sqrt{\frac{2}{45}}÷ \sqrt{(\frac{3}{2})^{2} ×\frac{8}{5}} $
$~~~~~~~~~~~~~~~~= \sqrt{\frac{2}{45}}÷ \sqrt{\frac{18}{5}} $
$~~~~~~~~~~~~~~~~= \sqrt{\frac{2}{45}×\frac{5}{18}}= \frac{1}{9}. $
$解:由题意,,得\begin{cases}{ 2x-5≥0, }\ \\ { 10-4x≥0, } \end{cases}\ $
$解得x=\frac{5}{2},∴y=1.\ $
$∵x \sqrt{2x}÷ \sqrt{\frac{x}{y}}=x \sqrt{2x÷\frac{x}{y}}=x \sqrt{2y},\ $
$∴当x=\frac{5}{2},y=1时,原式=\frac{5\sqrt {2} }{2}.$
$解:由题意得\begin{cases}{ 9-x≥0, } \\ {x-6>0, } \end{cases} 解得6<x≤9. $
$ ∵x为偶数,∴x=8, $
$ ∴ (1+x)· \sqrt{\frac{1-2x+x²}{x²-1}}=(1+x) ·\sqrt{\frac{(x-1)²}{(x+1)(x-1)}}$
$= \sqrt{\frac{(x+1)²(x-1)²}{(x+1)(x-1)}}=\sqrt {(x+1)(x-1)}\ $
$=\sqrt {9×7}=3\sqrt {7} .$
$解:设a= \sqrt{3\sqrt{5\sqrt {3\sqrt {5···}} } },$
$两边平方,得a²=3 \sqrt{{5\sqrt {3\sqrt {5···}} }},$
$a⁴=45 \sqrt{3\sqrt{5···}},$
$则a⁴=45a.因为a≠0,两边同除以a,$
$得a³=45,∴a=\sqrt [3]{45} .$
$解:原式= \sqrt{(\frac{a}{2})^{2} ·ab²} ÷ \sqrt{(4a)²·\frac{a}{b}}\ $
$~~~~~~~~~~~~~~~~= \sqrt{\frac{a^{3} b^{2} }{4}} ÷ \sqrt{\frac{16a^{3} }{b}}$
$~~~~~~~~~~~~~~~~= \sqrt{\frac{a^{3} b^{2} }{4}·\frac{b}{16a^{3} }} = \frac{b}{8}\sqrt { b}.\ $
$解:∵x\lt 1,∴y= \frac{ |x-1|}{x-1} +3= \frac{-(x-1)}{x-1} +3=2,$
$∴原式=y·\sqrt {3y}·\sqrt {y^{4} }· \sqrt{\frac{1}{y}} =\sqrt {3} y^{3} ,$
$当y=2时,原式=8\sqrt {3} .$
$解:设x= \sqrt{4+\sqrt{7}} - \sqrt{4-\sqrt {7} } ,$
$两边平方,$
$得x²=( \sqrt{4+\sqrt {7} } )²+\ ( \sqrt{4-\sqrt {7} } )²$
$-2 \sqrt{(4+\sqrt {7} )(4-\sqrt {7} )} ,$
$即x²=4+\sqrt {7} +4-\sqrt {7} -6,\ $
$∴x²=2,∴x=±\sqrt {2} .\ $
$∵\sqrt{4+\sqrt {7} } - \sqrt{4-\sqrt{7}} > 0.$
$∴. \sqrt{4+\sqrt{7}} - \sqrt{4-7} =\sqrt {2} .$