$解:(1)\sqrt{15}- \sqrt{14}=\frac{1}{\sqrt{15}+\sqrt{14}},$
$\sqrt {14} -\sqrt {13} =\frac{1}{\sqrt{14}+\sqrt {13} }.$
$∵\sqrt {15} > \sqrt{13},$
$∴\sqrt{15}+\sqrt{14}> \sqrt{14}+\sqrt {13} ,$
$∴\sqrt{15}-\sqrt{14}< \sqrt{14}- \sqrt{13}.$
$(2)∵x+1≥0,x-1≥0,∴x≥1.$
$∵y= \sqrt{x+1}- \sqrt{x-1}+3$
$=\frac {2}{\sqrt {x+1} +\sqrt {x-1} }+3,$
$当x=1时,分母\sqrt {x+1} + \sqrt{x-1}有最小值\sqrt {2} ,$
$∴y=\frac {2}{\sqrt{x+1}+ \sqrt{x-1}}+3的最大值是\sqrt {2} +3.\ $