电子课本网 第137页

第137页

信息发布者:
D
$x=\frac{\sqrt {30} }{2} $
5或15或21
$解:(2)\frac{3}{\sqrt{11}-2\sqrt {2} }$
$=\frac{3×(\sqrt{11}+2\sqrt {2} )}{(\sqrt {11} -2\sqrt {2} )(\sqrt{11}+2\sqrt {2} )}\ $
$=\sqrt{11}+2\sqrt {2} ,\ $
$\frac{4}{\sqrt{15}-\sqrt{11}}$
$=\frac {4×(\sqrt {15} +\sqrt {11} )}{(\sqrt {15} -\sqrt {11} )(\sqrt {15} +\sqrt {11} )} =\sqrt {15}+\sqrt {11} ,\ $
$∵2\sqrt {2} < \sqrt{15},$
$∴\sqrt{11}+2\sqrt {2} < \sqrt{15}+ \sqrt{11},\ $
$∴ \frac {3}{\sqrt {11} -2\sqrt {2} }<\frac {4}{\sqrt {15} -\sqrt {11} }.$
(更多请点击查看作业精灵详解)
$解:(1)\sqrt{15}- \sqrt{14}=\frac{1}{\sqrt{15}+\sqrt{14}},$
$\sqrt {14} -\sqrt {13} =\frac{1}{\sqrt{14}+\sqrt {13} }.$
$∵\sqrt {15} > \sqrt{13},$
$∴\sqrt{15}+\sqrt{14}> \sqrt{14}+\sqrt {13} ,$
$∴\sqrt{15}-\sqrt{14}< \sqrt{14}- \sqrt{13}.$
$(2)∵x+1≥0,x-1≥0,∴x≥1.$
$∵y= \sqrt{x+1}- \sqrt{x-1}+3$
$=\frac {2}{\sqrt {x+1} +\sqrt {x-1} }+3,$
$当x=1时,分母\sqrt {x+1} + \sqrt{x-1}有最小值\sqrt {2} ,$
$∴y=\frac {2}{\sqrt{x+1}+ \sqrt{x-1}}+3的最大值是\sqrt {2} +3.\ $