证明:$(1)∵$四边形$ABCD$内接于$⊙O.$
$∴∠ABC+∠ADC=180°,$
$∵∠ABC=60°,$
$∴∠ADC=120°,$
$∵DB$平分$∠ADC,$
$∴∠ADB=∠CDB=60°,$
$∴∠ACB=∠ADB=60°,$$∠BAC=∠CDB=60°,$
$∴∠ABC=∠BCA=∠BAC,$
$∴△ABC$是等边三角形.
$(2)$解:过点$A$作$AE⊥CD$于点$E,$
$∴∠AED=90°,$
∵四边形$ABCD$为圆内接四边形,
$∴∠ADC=180°-∠ABC=120°,$

$∴∠ADE=60°,$
$∴∠DAE=30°,$
$∴DE=\frac {1}{2}AD=1,$
$∴AE=\sqrt {AD^2-DE^2}=\sqrt {3},$
$∵CD=3,$
$∴CE=CD+DE=3+1=4,$
在$Rt△AEC$中,$∠AED=90°,$
$∴AC=\sqrt {AE^2+CE^2}=\sqrt {19},$
$∵△ABC$是等边三角形,
$∴AB=BC=AC=\sqrt {19},$
$∴△ABC$的周长为$3\sqrt {19}.$