证明:$(1)$连接$OD. $
$∵ OA=OD,$
$∴ ∠OAD=∠ODA.$
$∵ AD$平分$∠BAC,$
$∴ ∠OAD=∠BAD,$
$∴ ∠ODA=∠BAD,$
$∴ OD//AB,$
$∴ ∠ODC=∠B=90°,$
$∴ OD⊥BC.$
$∵ OD$是$⊙O$的半径,
$∴ BC$是$⊙O$的切线.
$(2)$连接$OF、$$DE.$
$∵ ∠B=90°,$$∠ADB=60°,$
$∴ ∠BAD=30°,$
$∴ AD=2BD=10. $
$∵ AE$是$⊙O$的直径,
$∴ ∠ADE=90°. $
$∵ AD$平分$∠BAC,$
$∴ ∠DAE=∠BAD=30°,$
$∴ DE= \frac {1}{2}\ \mathrm {AE}. $
∵ 在$Rt∠ADE$中,$DE²+AD²=AE²,$
$∴ ( \frac {1}{2}\ \mathrm {AE})²+10²=AE²,$
解得$AE =\frac {20\sqrt{3}}{3} ($负值舍去),
$∴ OA= \frac {1}{2}\ \mathrm {AE}= \frac {10\sqrt{3}}{3} . $
$∵ AD$平分$∠BAC,$
$∴ ∠BAC=2∠BAD=60°. $
$∵ OA=OF,$
$∴ △AOF$是等边三角形,
$∴ ∠AOF=60°. $
$∵ OD//AB,$
$∴ S_{△ADF}=S_{△AOF},$
$∴ S_{涂色}=S_{扇形}OAF= \frac {60π×(\frac {10\sqrt{3}}{3})²}{360}=\frac {50π}{9}.$