解:$(1)∵∠BAC=90°,$$∠ABC=60°,$
$∴∠ACB=180°-90°-60°=30°.$
$∵AD,$$CE$分别平分$∠BAC,$$∠ACB,$
$∴∠CAO=\frac {1}{2}∠BAC=45°,$$∠ACO=\frac {1}{2}∠ACB=15°,$
$∴∠AOE=∠CAO+∠ACO=45°+15°=60°.$
$(2)$在$AC$上截取$AF=AE,$连接$OF,$如图所示:
$∵AD$平分$∠BAC,$
$∴∠BAD=∠CAD.$
在$△AOE$和$△AOF $中,
$\{ \begin{array}{l}{AE=AF} \\{∠EAO=∠FAO} \\{AO=AO} \end{array},$
$∴△AOE≌△AOF,$
$∴∠AOE=∠AOF,$
由$(1)$知$∠AOE=60°,$
$∴∠AOF=60°,$$∠COD=60°,$
$∴∠COF=180°-∠AOF-∠COD=180°-60°-60°=60°.$
在$△COF $和$△COD$中,
$\{ \begin{array}{l}{∠FOC=∠DOC } \\{CO=CO} \\{∠FCO=∠DCO} \end{array},$
$∴△COF≌△COD,$
$∴CF=CD,$
$∴AC=AF+CF=AE+CD.$