证明:$(1)$连接$BD,$
$∵AD$平分$∠BAC,$$DM⊥AB,$$DN⊥AC,$
$∴DM=DN,$
$∵DE$是$BC$的垂直平分线,
$∴DB=DC,$
在$Rt△BMD$和$Rt△CND$中,
$\begin{cases}{DM=DN}\\{BD=DC}\end{cases}$
$∴Rt△BMD≌Rt△CND(\mathrm {HL}),$
$∴BM=CN.$
$(2)$在$Rt△AMD$和$Rt△AND$中,
$\begin{cases}{DM=DN}\\{AD=AD}\end{cases}$
$∴Rt△AMD≌Rt△AND(\mathrm {HL}),$
$∴AM=AN,$
$∵BM=CN,$
$∴AB-AM=AN-AC,$
$∴AB+AC=AN+AM,$
$∴AB+AC=2AM,$
$∴AM=\frac {1}{2}(AB+AC).$