首 页
电子课本网
›
第101页
第101页
信息发布者:
$-\frac {8c^3d}{3a^3b^4}$
$-4y²$
$\frac {x+2}{x-1}$
$-\frac {1}{2}$
$解:原式=\frac {(x+3)(x-3)}{(x+3)^2}·\frac {3x^2(x+3)}{x(x-3)}$
$=3x$
$将x=-\frac {1}{6}代入原式,得:$
$原式=3×(-\frac {1}{6})$
$=-\frac {1}{2}$
$解:原式=\frac {a}{a-1}·\frac {(a+1)(a-1)}{a+1}-2a+1$
$=a-2a+1$
$=-a+1$
$将a=3代入原式,得:$
$原式=-3+1=-2$
解:原式$=\frac {5a-2b }{(a+2b)(a-2b)}·(a-2b)$
$ =\frac {5a-2b}{a+2b}$
$ ∵\frac {a}{2}=\frac {b}{3} \neq 0,$
$∴\frac {a}{b}=\frac {2}{3} . $
设$ a=2k(k \neq 0),$则$b=3k.$
∴原式$ =\frac {10k-6\ \mathrm {k}}{2k+6k}=\frac {1}{2} $
$解:设花种数量为 m . 由题意, 得甲地的撒播密度是 \frac {m}{a^2-b^2}, $
$乙 地的撒播密度是 \frac {m}{{\frac {1}{4}}(a+b)^2} . $
$∴甲、乙两块土地的撒播密度的比 为 \frac {m}{a^2-b^2}: \frac {m}{{\frac {1}{4}}(a+b)^2}=\frac {a+b}{4(a-b)} . $
$当 a=\frac {5}{3}\ \mathrm {b} 时, 原式 =1 .$
$ ∴若 a=\frac {5}{3}\ \mathrm {b} ,则甲、乙两块土地的撒播密度一样大.$
上一页
下一页