$解:根据题意, 得 |a-b+1| + \sqrt {a+2b+4}= 0.\ $
$∵|a-b+1|\geqslant0,\sqrt{a+26+4}\geqslant 0,$
$∴|a-b+1|= 0,\sqrt {a+2b+4}=0$
$即{{\begin{cases}{{a-b+1=0}}\\{a+2b+4=0} \end{cases}}}$
$\ 解得,{{\begin{cases}{{a=-2}}\\{b=-1} \end{cases}}}$
$∴ 3a+3b的立方根为{\sqrt[{{3}}] {3a+3b}}={\sqrt[{{3}}] {-9}}=-{\sqrt[{{3}}] {9}}$