$解:(1)设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元$
$由题意,得\begin{cases}{60a+40b=1520 } \\{30a+50b=1360} \end{cases},解得\begin{cases}{a=12}\\{b=20}\end{cases}$
$答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元。$
$(2)设第三次购进x千克甲种水果,则购进(200-x)千克乙种水果$
$由题意,得12x+ 20(200- x)≤3360,解得x≥80$
$设获得的利润为w元$
$由题意,得w=(17-12)×(x-m)+(30- 20)×(200-x-3m)=-5x-35m+ 2000$
$∵-5\lt 0,∴w随x的增大而减小$
$∴x= 80时,w的值最大,最大值为-35m+ 1600$
$由题意,得-35m+ 1600≥800,解得m≤\frac {160}{7}$
$∴正整数m 的最大值为22$