$解:(1)如图所示$
$(2)证明:①∵AD= AB+CD,AF=AB,∴DF= DC$
$又∵DE平分∠ADC,∴∠FDE=∠CDE$
$在△FED和△CED中$
$\begin{cases}{DF=DC}\\{∠FDE=∠CDE}\\{DE= DE}\end{cases}$
$∴△FED≌△CED(\mathrm {SAS}),∴EC= EF$
$②由①得∠DFE=∠DCE=90°,∠DEF=∠DEC,∴∠AFE= 180°-∠DFE=90°$
$∵AF=AB,AE=AE,∴Rt△AFE≌Rt△ABE(\mathrm {HL})$
$∴∠AEB=∠AEF$
$∴∠AED=∠AEF+∠DEF=\frac {1}{2}(∠CEF+∠BEF)=90°,∴AE⊥DE$