电子课本网 第95页

第95页

信息发布者:
$ AC=\frac {2\sqrt{3}}{3}DE$
$(2)解:在Rt△BAE,∠AEB=90°,∠EBA=30°,$
$AB=4$
$∴AE=AB×sin∠EBA=\frac12AB=2,∠BAE=60°$
$延长DE交AB于点F,如图所示$

$∴EF=AE×sin∠BAE=\frac {\sqrt{3}}{2}×2=\sqrt{3},AF=\frac12AE=1$
$∴BF=AB-AF=4-1=3,$
$由(1)可得AC=\frac {2\sqrt{3}}{3}DE$
$∴DE=\frac {\sqrt{3}}{2}AC=\sqrt{3},$
$∴DF=DE+EF=2\sqrt{3}$
$在Rt△BFD中,BD=\sqrt{BF^2+DF^2}$
$=\sqrt{3^2+(2\sqrt{3})^2}=\sqrt{21}$
$∵△ABC∽△EBD$
$∴\frac {BC}{BD}=\frac {AC}{DE}=\frac {2\sqrt{3}}{3}$
$∴BC=\frac {2\sqrt{3}}{3}×\sqrt{21}=2\sqrt{7}$
$即BC=2\sqrt{7}$
$(3)(更多请点击查看作业精灵详解)$
$(1)解:∵A(\sqrt{3},0),B(0,1)$
$∴OA=\sqrt{3},OB=1$
$由折叠的性质可得OA′=OA=\sqrt{3}$
$在Rt△A′OB中,A′B=\sqrt{OA′^2-OB^2}=\sqrt{2}$
$∴点A′的坐标为(\sqrt{2},1)$
$(2)(更多请点击查看作业精灵详解)$

$(2)解:在Rt△ABO中,OA=\sqrt{3},OB=1$
$∴AB=\sqrt{OA^2+OB^2}=2$
$∵P是AB的中点$
$∴AP=BP=1,OP=\frac12AB=1$
$∴OB=OP=BP$
$∴△BOP是等边三角形$
$∴∠BOP=∠BPO=60°$
$∴∠OPA=180°﹣∠BPO=120°$
$由折叠的性质得:∠OPA'=∠OPA=120°,PA'=PA=1$
$∴∠BOP+∠OPA'=180°$
$∴OB//PA'$
$又∵OB=PA'=1$
$∴四边形OPA'B是平行四边形$
$∴A'B=OP=1$
$(3)解:如图所示,以AB为边在AB上方作Rt△BAE,且∠EAB=90°,∠EBA=30°,连接BE,EA,ED,EC,$


$在Rt△BDC中,∠DBC=30°,$
$在Rt△BAE中,∠EAB=90°,∠EBA=30°,∴△ABE∽△CBD$
$∴∠ABE=∠CBE$
$∴∠ABC=∠EBD$
$\frac {DB}{EB}=\frac {BC}{BA}$
$∴△BDE∽△BCA$
$∴\frac {DE}{AC}=\frac {BD}{BC}=\frac {2\sqrt{3}}{3} $
$∵AC=2$
$∴DE=\frac {4\sqrt{3}}{3}$
$在Rt△AEB中,AB=4$
$AE=AB×tan∠EBA=4×\frac {\sqrt{3}}{3}=\frac {4\sqrt{3}}{3}$
$∴D在以E为圆心,\frac {4\sqrt{3}}{3}为半径的圆上运动$
$∴当点A,E,D三点共线时,AD的值最大,此时$
$如图所示,则AD=AE+DE=\frac {8\sqrt{3}}{3}$
$在Rt△ABD中$
$BD=\sqrt{AB^2+AD^2}=\sqrt{4^2+(\frac {8\sqrt{3}}{3})^2}=\frac {4\sqrt{21}}{3}$
$∴cos ∠BDA=\frac {AD}{BD}=\frac {\frac {8\sqrt{3}}{3}}{\frac {4\sqrt{21}}{3}}=\frac {2\sqrt{7}}{7}$
$sin∠BDA=\frac {AB}{BD}=\frac {4}{\frac {4\sqrt{21}}{3}}=\frac {\sqrt{21}}{7}$
$∵∠BEA=90°$
$∴∠BED=90°$
$∵△ABC∽△EBD$
$∴∠BDE=∠BCA$
$过点A做AF⊥BC于点F$

$∴CF=AC×cos∠ACB=2×\frac {2\sqrt{7}}{7}=\frac {4\sqrt{7}}{7}$
$AF=AC×sin∠ACB=\frac {2\sqrt{21}}{7}$
$∵∠DBC=30°$
$∴BC=\frac {\sqrt{3}}{2}BD=\frac {\sqrt{3}}{2}×\frac {4\sqrt{11}}{3}=2\sqrt{7}$
$∴BF=BC-CF=2\sqrt{7}-\frac {4\sqrt{7}}{7}=\frac {10\sqrt{7}}{7}$
$在Rt△AFB中,tan ∠CBA=\frac {AF}{BF}=\frac {\frac {2\sqrt{21}}{7}}{\frac {10\sqrt{7}}{7}}=\frac {\sqrt{3}}{5}$