电子课本网 第35页

第35页

信息发布者:
-1
1
$a^n×b^n$
$解:(2)(a×b)^n$
$=\underbrace {(a×b)×(a×b)×···×(a×b)}_{n个(a×b)相乘}$
$=a×b×a×b···×a×b$
$=\underbrace {(a×a×···×a)}_{n个a相乘}×\underbrace {(b×b×···×b)}_{n个b相乘}$
$=a^n×b^n$
$(3)①原式=(-\frac 14×4)^{1000}=1$
$②原式=(-\frac18)^2×(-\frac18)^{2022}×2×2^{2022}×4^{2022}$
$=\frac1{64}×2×(-\frac18×2×4)^{2022}$
$=\frac1{32}$
C
1
2
$4y$
$解:(2)因为m=log_23,$
$所以n=log_2{36}=log_29+log_24=log_23^2+log_22^2$
$=2log_23+2log_22$
$=2m+2$