解:$(1)$由$v=\frac st $可得,小明从家到学校需要的时间$t_{0}=\frac {s_{总}}{v_{1}}=\frac {2\ \text {km}}{5\ \text {km/h}}=0.4\ \text {h}= 24\ \text {min}.$
$ (2)$设小明父亲经过时间$t $能追上小明,由$v=\frac st $可得,
$ $小明步行的路程$s_{1}= v_{1}(t_{1}+t )=5\ \text {km/h}×(\frac {5}{60}\ \text {h}+t)①$,
$ $小明父亲行驶的路程$s_{2}=s_{1}=v_{2} t=10\ \text {km/h}×t②$,
联立①②,解得$t=\frac {1}{12}\ \text {h}=5\ \text {min}.$
$ (3)$由$v=\frac st$,可得,出发$5\ \text {min}$小明通过的路程
$ s_{1}'= v_{1} t_{1}=5\ \text {km/h}×\frac {5}{60}\ \text {h}=\frac {5}{12}\ \text {km}$,
$ $设小明父亲经过时间$t'$和小明在途中相遇$﹐$此时小明父亲通过的路程$s_{2}'= v_{2} t'=10\ \text {km/h}×t'③$,
$ $小明掉头后通过的路程$s_{1}''=v_{1}\ \text {t}'=5\ \text {km/h}×t'④$,
由题意可知,$ s_{2}'+s_{1}''=s_{1}'=\frac {5}{12}\ \text {km}⑤$,
联立③④⑤,解得$t'=\frac {1}{36}\ \text {h}$,
$ $小明父亲通过的路程$s_{2}'=\frac {5}{18}\ \text {km}$,
$ $则小明与父亲在途中相遇时离学校的距离$s'=s_{总}-s_{2}'=2\ \text {km}-\frac {5}{18}\ \text {km}≈1.72\ \text {km}.$