电子课本网 第32页

第32页

信息发布者:
解:​$(1)$​原式​$=(1000-1)×(-15)$​
​$=15-15000$​
​$=-14985$​
​$(2)$​原式​$=9999×[118\frac {4}{5}+(-\frac {1}{5})-18\frac {3}{5}]$​
​$=999×100$​
​$=99900$​
解:​$(1)$​原式​$=(-\frac {1}{2})×(-\frac {2}{3})× (-\frac {3}{4})×···× (-\frac {99}{100})$​
​$=-\frac {1}{2}×\frac {2}{3}×\frac {3}{4}×···×\frac {99}{100}$​
​$=-\frac {1}{100}$​
​$(2)$​原式​$=2024×(1-\frac {1}{2})×(1-\frac {1}{3})×···× (1-\frac {1}{2024})$​
​$=2024×\frac {1}{2}×\frac {2}{3}×···×\frac {2023}{2024}$​
​$=1$​
解:​$(1)\frac {1}{1×2}+\frac {1}{2×3}+\frac {1}{3×4}+\frac {1}{4×5}+···+\frac {1}{2021×2022}$​
​$=1-\frac {1}{2}+\frac {1}{2}-\frac {1}{3}+···+\frac {1}{2021}-\frac {1}{2022} $​
​$=1-\frac {1}{2022}$​
​$=\frac {2021}{2022} $​
​$(2)\frac {1}{1×3}+\frac {1}{3×5}+\frac {1}{5×7}+···+\frac {1}{2021×2023} $​
​$=\frac {1}{2}×(1-\frac {1}{3})+\frac {1}{2}×(\frac {1}{3}-\frac {1}{5})+\frac {1}{2}×(\frac {1}{5}-\frac {1}{7})+$​
​$···+\frac {1}{2}×(\frac {1}{2021}- \frac {1}{2023}) $​
​$=\frac {1}{2}×(1-\frac {1}{3}+\frac {1}{3}-\frac {1}{5}+\frac {1}{5}-\frac {1}{7}+···+\frac {1}{2021}-\frac {1}{2023})$​
​$=\frac {1}{2}×(1-\frac {1}{2023})$​
​$=\frac {1011}{2023}$​
​$(3)$​∵​$\frac {1}{1+2}=\frac {1}{3}$​,​$\frac {1}{3}×\frac {1}{2}=\frac {1}{2×3}=\frac {1}{2}-\frac {1}{3}$​;
​$ \frac {1}{1+2+3}=\frac {1}{6}$​,​$\frac {1}{6}×\frac {1}{2}=\frac {1}{12}=\frac {1}{3×4}=\frac {1}{3}-\frac {1}{4}$​; 
​$\frac {1}{1+2+3+4}=\frac {1}{10}$​,​$\frac {1}{10}×\frac {1}{2}=\frac {1}{20}=\frac {1}{4×5}=\frac {1}{4}-\frac {1}{5}$​; 
​$\frac 1{1+2+3+4+···+2021+2022}=\frac 1{2023×1011}$​
∴​$\frac {1}{2023×1011}×\frac {1}{2}=\frac {1}{2022×2023}=\frac {1}{2022}-\frac {1}{2023}$​
∴原式​$=2×(\frac {1}{2×3}+\frac {1}{3×4}+\frac {1}{4×5}+···+\frac {1}{2022×2023}) $​
​$=2×(\frac {1}{2}-\frac {1}{3}+\frac {1}{3}-\frac {1}{4}+\frac {1}{4}-\frac {1}{5}+···+\frac {1}{2022}-\frac {1}{2023})$​
​$=2×(\frac {1}{2}-\frac {1}{2023})$​
​$=2×\frac {2021}{4046}$​
​$=\frac {2021}{2023}$​